IT Infrastructures Department AIYPN NIMMYN NP'7NN

BlIU Slurm System

Slurm is a Linux open-source resource manager and job scheduler designed to utilize
a fair share of the computing resources.

What Are Slurm Partitions?

Partitions in Slurm are sets of compute nodes grouped for specific types of jobs. Each
partition has its own limits such as maximum job runtime, hardware (CPUs, GPUs), and
access permissions. Partitions are similar to queues in other workload managers.
Programs (jobs) run via Slurm are sent to one or more of the physical servers (Nodes).
Slurm is software that helps defining and executing these jobs, as well as managing
users, permissions, and resource allocation. It helps track and display job details as well.
Users must select a partition that matches the resources their job needs. If not specified,
the default partition will be used.

Slurm login servers — the servers you connect to in order to submit your batch jobs.

Compute nodes — the servers within the partitions where your jobs actually run.

1. BIU Cluster partitions Summary

Cluster General Partitions Summary

Partition Purpose Nodes Max Access MaxJobs | Max Node
Name Time (Accounts) Per User | GPU /CPU | Mem
Per Job
generic General GPU jobs | dsicsgpu[02-09], | 4h All users 8 jobs 8 GPUs 192G
dsisarit[02,05]

generic-48G General GPU jobs | dsiaw15 4h All users 2 jobs 2 GPUs 128G

H200-4h GPU jobs on H200 | hpc8h200-01 4h All users 4 jobs 2 GPUs 2T

H200-12h GPU jobs on H200 | hpc8h200-01 12h All users 4 jobs 2 GPUs 2T

L4-4h GPU jobs on L4 hpc8l4-01-01 4h All users 4 jobs 2 GPUs 512G

L4-12h GPU jobs on L4 hpc814-01-01 12h All users 4 jobs 2 GPUs 512G

A100-4h GPU jobs on A100 | hpc2a100-01 4h All users 4 jobs 2 GPUs 512G

cpulT-24h CPU jobs hpccpu01 24h All Users 8 jobs 48 CPUs 1T

cpu192G-48h | CPU jobs dml[02-25] 48h All Users 16 jobs 48 CPUs 192G

Cluster Private Partitions Summary
Partition Purpose Nodes Max Access (Accounts) | MaxJobs | Max Node
Name Time Per User | GPU/CPU | Mem
Per Job

p_kugler GPU jobs on A100 | hpc2a100-01 Unlimited | Users in Prof. | Unlimited | Unlimited 512G
Kugler group Kugler’'s group

p_amsterdamer | CPU jobs | dmli[02-21] Unlimited | Users in Prof. | Unlimited | Unlimited 192G
Amsterdamer Amsterdamer’s
group group

p_glickman GPU jobs dsicsgpu[02— Unlimited | Users in Prof. | Unlimited | Unlimited 192G
Glickman group 09] Glickman’s group

p_kraus GPU jobs dsisarit[02,05] | Unlimited | Users in Prof. | Unlimited | Unlimited 192G
Kraus group Kraus’s group

p_weiss GPU jobs dsiaw15 Unlimited | Users in Prof. | Unlimited | Unlimited 128G
Weiss group Weiss'’s group

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fslurm.schedmd.com%2F&data=05%7C02%7Cnava.shaya%40biu.ac.il%7C22cae421bd714746a5c208dda735ea88%7C61234e145b874b67ac198feaa8ba8f12%7C0%7C0%7C638850572179773845%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=OV548YrHkdQyJYScbo5K%2Bmyx6I6Mr9p%2BLJohGsgmJU0%3D&reserved=0

IT Infrastructures Department AIYPN NIMMYN NP'7NN

2. Job Submission Examples

Note: All job submission scripts must include lines that begin with #SBATCH. These are
special directives that Slurm uses to allocate resources and control job behavior.

This section explains how to create a slurm job script and submit it, including examples
and explanations of the parameters.

Basic CPU Job

#!/bin/bash

#SBATCH --job-name=cpu_test
#SBATCH --output=cpu_test_%j.out
#SBATCH --error=cpu_test %j.err
#SBATCH --partition=<Partition-name>
#SBATCH --cpus-per-task=4
#SBATCH --mem=<size>[M- G]

< user commands>

< example: python script.py>

Basic GPU Job

#!/bin/bash

#SBATCH --job-name=gpu_test
#SBATCH --output=gpu_test_%j.out
#SBATCH --error=gpu_test %j.err
#SBATCH --partition=<partition name>
#SBATCH --gres=gpu:1

#SBATCH --mem=<size>[M G]

<user commands>

<example: python gpu_script.py>

Resources:

e By default, 1 CPU is allocated to a job. To request more CPUs use:
#SBATCH --cpus-per-task=N , where N is the number of CPUs you need.
Ensure that N does not exceed the CPU limit of the partition, which can be found in
the partition table in Section 1.

e By default, 16 GB of memory is allocated for each CPU assigned to the job.
To request more memory use: #SBATCH --mem=<size>[M- G]

e By default, no GPUs are allocated to a job. To request GPUs use:
#SBATCH --gres=gpu:1, where N is the number of GPUs you need.
Ensure that N does not exceed the GPU limit of the partition, which can be found in
the partition table in Section 1.

IT Infrastructures Department AIYPN NIMMYN NP'7NN

in case the partition includes several types of GPU’s and you want a specific GPU, use:
#SBATCH --gres=gpu:<type>:<count>

Email notification:

You can declare (enable) email notifications in your job Slurm script file:
#SBATCH --mail-user=your.email@example.com

#SBATCH --mail-type=[ALL,BEGIN,END,FAIL]

Maximum run time:

You can use the --time option to set the maximum runtime for your job.

#SBATCH --time=HH:MM:SS

e If you don’t specify --time, the job will run using the default time limit of the partition.

e In case you use --time option, please make sure the time you request does not
exceed the maximum allowed by your partition.

Docker Job
If you are using docker:
¢ Run the container in the foreground (without using -d).
e Docker container name should be slurm-$SLURM_JOB_ID for traceability
Use this in your batch script:
DockerName=slurm-job-$SLURM_JOB_ID
docker run --name "$DockerName" --rm my-image:latest python script.py

e |If your Slurm job requests GPUs, use the list that Slurm provides in
SLURM_JOB_GPUS variable to restrict Docker to the GPUs allocated to you.
In your sbatch job script:
docker run --name "$DockerName" --rm --gpus "device=${SLURM_JOB_GPUS}"
my-image:latest python script.py
SLURM_JOB_GPUS is typically a comma-separated list of device indices (e.g.,
0,2).

o If your workflow relies on CUDA_VISIBLE_DEVICES, pass it into the
container: CUDA_VISIBLE_DEVICES="${SLURM_JOB_GPUS}"

Example of a Docker batch script:

#!/bin/bash

#SBATCH --job-name=docker_job

#SBATCH --output=docker_job-%j.out

#SBATCH --error=docker_job-%j.err

#SBATCH --partition=generic

#SBATCH --gres=gpu:1

DockerName=slurm-job-$SLURM_JOB_ID

docker run --name "$DockerName" --rm --gpus "device=${SLURM_JOB_GPUS}" \
my-image:latest python script.py

IT Infrastructures Department

Conda Job

#!/bin/bash

#SBATCH --job-name=conda_job

#SBATCH --output=conda_job_%j.out

#SBATCH --error=conda-job_%j.err

#SBATCH --partition=<partition name>

#SBATCH --mem=<size>[M G]

source ~/miniconda3/etc/profile.d/conda.sh

conda activate myenv # Or source your environment
python script.py

MATLAB job

#!/bin/bash

#SBATCH --job-name=matlab_job
#SBATCH --output=matlab_job_%,j.out
#SBATCH --error=matlab-job_%j.err
#SBATCH --partition=<partition name>

#SBATCH --mem=<size>[M G]

#SBATCH --cpus-per-task=48
<user commands>

matlab -batch "run('mymatlab.m’)"
<user commands>

Important Note:

AIYPN NIMMYN NP'7NN

When Running MATLAB with parallel workers and submitting a MATLAB job with Slurm

using:

#SBATCH --cpus-per-task=48 % <-- 48 is just an example

In order to ensure MATLAB uses all the CPU cores allocated by Slurm, add the

following to your MATLAB job script (e.g. mymatlab.m):

num_workers = str2double(getenv("SLURM_CPUS_PER_TASK"));

¢ = parcluster('local’);

c.NumWorkers = num_workers; % or exact number of cores you want to use

(e.g. 48)
saveProfile(c);

IT Infrastructures Department AIYPN NIMMYN NP'7NN

3. How to submit the job

1.

2.
3.

4.

Connect to one of the slurm_login servers suing SSH:
ssh slurm-login1.Inx.biu.ac.il or

ssh slurm-login2.Inx.biu.ac.il or

ssh slurm-login3.Inx.biu.ac.il

Submit Your Job: sbatch myJob.sh

Monitor your job using squeue -u <your-username>

After submission, Slurm will generate output and error files according to what you
have declared in your sbatch job:

#SBATCH --output=<file-name>.out

#SBATCH --error=<file-name>.err

Example:

#SBATCH --output=matlab_job_%j.out # the file name include the job-id
#SBATCH --error=matlab-job_%j.err # the file name include the job-id

Make sure you check output and error files for progress

4. Job Time Limits and Requeue Policy

Jobs submitted with sbatch will be automatically suspended and requeued by the
system when they reach the time limit of the partition they were submitted to (see the
Max time in Part 1).

Checkpoints:
To benefit from requeuing, implement checkpointing in your application:

e Save progress periodically.
e On restart, resume from the latest checkpoint.

Without checkpointing, the requeued job will start from the beginning.

IT Infrastructures Department AIYPN NIMMYN NP'7NN

5. Interactive Jobs

srun is used to run immediate/interactive commands directly on compute nodes managed
by Slurm.
srun can both request resources and immediately run a command in that allocation.

Examples:
1. srun --partition=<partition-name> <command>
Runs a single command on a compute node in the specified partition

2. srun --partition=<partition-name> --pty bash
Starts an interactive shell on a compute node in the given partition.
When you exit the shell (exit), the allocation ends and resources are released.

3. srun --partition=<partition-name> --gres=gpu:1 —time=HH:MM:SS --pty bash
Open an interactive shell with 1 GPU for 1 hour.
When you exit the shell (exit), the allocation ends and resources are released.

Important Notes:
« Interactive jobs launched this way will not be automatically requeued.
e Use srun only for quick tests, debugging, or development. For longer jobs or those
requiring resilience to timeouts, use sbatch with checkpointing

IT Infrastructures Department AIYPN NIMMYN NP'7NN

6. Private Partitions and Accounts

[

As noted in Section 1, some partitions are private.
The private partitions p_kugler, p_amsterdamer, p_glickman, p_kraus and p_weiss
are restricted: only members of the matching group may submit to the matching partition.

If you belong to Prof. Kugler’s group, you may use p_kugler partition.

If you belong to Prof. Amsterdamer’s group, you may use p_amsterdamer partition.
If you belong to Prof. Glickman’s group, you may use p_glickman partition.

If you belong to Prof. Kraus’s group, you may use p_kraus partition.

If you belong to Prof. Weiss’s group, you may use p_weiss partition.

To see which Slurm accounts you belong to use the command:
sacctmgr list assoc where user=$USER format=User,Account -nP

Use your username in place of SUSER

Users who are not in the corresponding group cannot use these partitions.

Scheduling & limits: Jobs on these private partitions have higher scheduling
priority on their dedicated resources and no MaxTime or resource limits (per
cluster policy).

How to submit a job to private partition
You should use the matching account, add the following to your batch script:
#SBATCH --account=<Account-name>
Account names:
e For Kuglers group use: ug_kugler as Account-name
o For Amsterdamer group use: ug_amsterdamer as Account name
o For Glikman group use: ug_cs_dsi as Account-name
e For Kraus group use: ug_kraus as Account-name
e For Weiss group use: ug_weiss as Account-name
#SBATCH --partition=<p_kugler | p_amsterdamer | p_glickman| p_kraus |
p_weiss>

IT Infrastructures Department AIYPN NIMMYN NP'7NN

7. Using Jupyter on Slurm Cluster

1. Install Jupyther Notebook locally in your home folder (pip3 install notebook) (if it is
not installed already.

2. Start Jupyter (no browser) on the compute node:
Connect to one of the slurm_login servers and run the following command:
srun --partition=<partition> --gres=gpu:1 jupyter-notebook --no-browser --
ip=0.0.0.0 &
o Note the node name and port number assigned by Slurm.
o Copy and save the URL that Jupyter prints (you'll need it later)

output example:
http://nodename:8888/tree ?token=e34d73f70fa48254500e0556663db7b859985448f9d9829d
http://127.0.0.1:8888/tree ?token=e34d73f70fa48254500e0556663db7b859985448f9d9829d

In this example node name and port number, assigned by Slurm, are: nodename
and 8888

3. On your local PC - Create an SSH tunnel:
On your local PC, run:
ssh -L <port-num>:localhost:<port-num> -J <username>@<slurm_login_server>
<username>@<node>
e Replace <port-num> with the actual port number from step 1.
e Replace <username> with your username.
o Replace <node> with the node assigned by Slurm (from step 1).

Use Jupyter Notebook from a Web Browser:
paste the copied Jupyter URL (from step 1, second line) into your local web browser.
You should now see the notebook interface running on the remote Slurm node.

Use Jupyter Notebook inside VS Code:

1. On your local PC, open VS Code and install the Microsoft Python and Jupyter
extensions (if they are not already installed). (No Remote-SSH is needed)

2. Press Ctrl+Shift+P — type “Jupyter: Specify Jupyter Server URL”

3. Choose “Existing”. Paste the URL printed by Jupyter (the one that you copied
when started jupyter) for example: http://localhost:8888/?token=abcd1234...
VS Code will now connect directly to that remote Jupyter kernel running on the
Slurm node.

To create a new notebook file:

e Ctrl + Shift + P — Jupyter: Create New Jupyter Notebook

e On the top-right corner and click Select Kernel.

e Choose — Existing Jupyter Server...
Paste the remote Jupyter server URL the one that you copied when started jupyter)
for example: http://localhost:8888/?token=abcd1234...)
VS Code will now connect to the Jupyter Notebook running on your Slurm node.

IT Infrastructures Department AIYPN NIMMYN NP'7NN

Important Notes:

o After testing and debugging your code, submit the actual job to the desired
partition using sbatch and a Slurm batch script.

e It is recommended to perform debugging and testing in a partition with less
powerful CPU/GPU nodes, to avoid occupying high-demand resources during
development. For production jobs, use sbatch with sbatch scripts.

e Using —time=HH:MM:SS will make sure the Job will stop automatically when the -
-time limit is reached or the partition’s time limit is hit.

8. Useful Slurm Commands

Submit a job sbatch job.sh
Check your jobs squeue -u $USER
Cancel a job scancel <job_id>

View available partitions sinfo

Version 1.6, 3 Nov 2025

